The energy of a nuclear explosion is transferred to the surrounding medium in three distinct forms: blast; thermal radiation; and nuclear radiation. The distribution of energy among these three forms will depend on the yield of the weapon, the location of the burst, and the characteristics of the environment. For a low altitude atmospheric detonation of a moderate sized weapon in the kiloton range, the energy is distributed roughly as follows:
50% as blast;
35% as thermal radiation; made up of a wide range of the electromagnetic spectrum, including infrared, visible, and ultraviolet light and some soft x-ray emitted at the time of the explosion; and
15% as nuclear radiation; including 5% as initial ionizing radiation consisting chiefly of neutrons and gamma rays emitted within the first minute after detonation, and 10% as residual nuclear radiation. Residual nuclear radiation is the hazard in fallout.
50% as blast;
35% as thermal radiation; made up of a wide range of the electromagnetic spectrum, including infrared, visible, and ultraviolet light and some soft x-ray emitted at the time of the explosion; and
15% as nuclear radiation; including 5% as initial ionizing radiation consisting chiefly of neutrons and gamma rays emitted within the first minute after detonation, and 10% as residual nuclear radiation. Residual nuclear radiation is the hazard in fallout.
The relative effects of blast, heat, and nuclear radiation will largely be determined by the altitude at which the weapon is detonated. Nuclear explosions are generally classified as air bursts, surface bursts, subsurface bursts, or high altitude bursts.
0 comments:
Post a Comment